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Abstract

VoxelMesh-ConvNet over 3d meshes which combine geodesic and euclidean
information from convolutions performed on actual 3d meshe and its
corresponding voxel representation respectively.

They perform semantic segmentation over 3d scene from scannet dataset.
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voxelization process omits all mesh edges and only retains Euclidean positions of
mesh vertices.

Point cloud in essence are only points embedded in 3d euclidean space.

Mesh are those point cloud (extracted using lidar, etc) and then connected to form
several triangles to represent the surfaces.



Euclidean Information

voxel- based methods suffer from ambiguous features on spatially close objects and struggle
with handling complex and irregular geometries due to the lack of geodesic information.

Compared to Point Cloud-

1. they lose resolution compared to point clouds, since several distinct points representing
intricate structures will be binned into one voxel if they're close together.

2. voxel grids can lead to unnecessarily high memory usage compared to point clouds in
sparse environments, since they actively consume memory to represent free and
unknown space whereas point clouds contain only known points.



Voxels

Imperfect approximation of an underlying 3D structure, hence useful in mutli-view

problems where earlier 2d images where used. Can’t make enough sense to use
it.



Intention of using Voxels, as | understood it

Being different from DCM-Net. No obvious reason was stated in the paper.

Though they show better performance by using voxels but that can be attributed to
the use some attention modules which work on both domains of input (voxels and

mesh).



Why both voxels and meshes

1. CNN generate similar features for voxels that are close in the Euclidean
domain, even though these voxels may belong to different objects and are
distant in the geodesic domain.

2. Without the geodesic information about shape surfaces, these Euclidean
convolutions may struggle with learning specific object shapes. As



Novel |ldea

1. Aggregate intra-domain features
2. Fuse inter-domain features.

Hence two key components of VMNet:

- Intra- domain Attentive Aggregation Module (work on only on mesh)
- Inter-domain Attentive Fusion Module. (work on fusing voxel and mesh

features)

Also adding attention to the network was also novel, earlier work like DCM-Net
didn’t use that.
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Figure 3. Overview of Voxel-Mesh Network (VMNet). Taking a colored mesh as input, we first rasterize it and apply voxel-based sparse
convolutions to extract contextual information in the Euclidean domain. These features are then projected from voxels to vertices, and are
further aggregated and fused in the geodesic domain producing distinctive per-vertex features. For simplicity, skip connections between
the encoder and decoder are neglected here and only three levels of hierarchical voxel downsampling and mesh simplification are shown.
The detailed network structure can be found in Supplementary Section A.



Input to the model

Taking a mesh as input, the colored vertices are first voxelized and then fed to the
Euclidean branch.

Euclidean Branch uses sparse voxel-based convolutions.

MLP in Attention layers are Graph Convs.



Geodesic branch

N

prepare hierarchy of simplified meshes (MO, ...,MI, ...,ML)

each level of simplified mesh M_| corresponds to a the simplified mesh. They are
saved for unpooling downsampling level of sparse voxels Sl. Trace maps of the
simplified mesh are saved for unpooling operations between mesh levels.

Mesh Simplification methods used: Vertex Clustering (VC) and Quadric Error
Metrics (QEM)



Trace maps

It defines which vertices are collapsed together. It is a permutation invariant
function. Mesh structure is preserved in all pooling levels using these maps. And
when unpooling these maps helps in developing accurate feature maps over
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At the first level of the decoding process (level L), the features are projected from
intra-domain attentive aggregation. The resulting geodesic features of ML are
unpooled to the next level ML-1.
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Voxel-vertex projection

Aggregation of euclidean features present in
layer |. Now transform the features of voxels Sl
back to vertices MI for further processing in the

geodesic domain.

Trilinear projection is used. Trilinear

interpolation involves only the immediate voxel
neighborhood of a sample point, which are the

voxels of the enclosing volume cell.
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Intra-domain Attention Layer

Intra-domain Attention Layer Aggregation Module

Ni is the one-ring neighborhood of vertex
Vi. The functions pintra, aintra , ¢intra ,
and yintra are vertex-wise feature T ————
transformations implemented by MLP, wij

is the attention coefficient, and d is the

size of output feature channels.
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Inter-domain Attentive Fusion Module

Inter-domain Attention Layer Fusion Module

where Ni is the same one-ring neighborhood ,
of vertex Vi as the one used for intra-domain ><

aggregation
: Vertex with geodesic feature
@: Vertex with Euclidean feature
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Mesh Simplification

Each level of simplified mesh corresponds to a level of downsampled 3D sparse
voxels.



Vertex Clustering

(1) construct a bounding box for
all vertices on the triangle mesh;

(2) regularly subdivide the
bounding box into smaller cells
(cell size depends on

the approximation error);

(3) associate each vertex with a
single cell which enclose it and
form all the vertices inside a
specific cell a cluster;

(4) collapse all vertices in
all clusters into a
representative vertices;

(5) remove triangles having more
than one vertex in a cluster and
return the new mesh;




Quadric Error Metrics

determines how far a vertex is from an ideal spot after collapse, thus has explicit
control over mesh topology.

The plane equation is ax + by + cz + d = 0 where a? + b? + ¢? = 1. Kp is quadric. It
approximate error around vertex p
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QEM Algorithm

1. Calculate this K for all vertices V. K is loss
Now For a given contraction (v1 ,v2 )— v', loss(v') should be minimum wrt v1, v2.

Since the loss function is quadratic, finding its minimum is a linear problem. Thus, we find v’ by
solving 91/dx = 01/dy = 91/0z = 0.

2. Select all valid pairs.

3. Compute the optimal contraction targetv for each valid pair (v1 ,v2 ). The errorv'T (Q1 +
Q2 ) v’ of this target vertex becomes the cost of contracting that pair.

4. Place all the pairs in a heap keyed on cost with the minimum cost pair at the top.

5. Iteratively remove the pair (v1 ,v2 )of least cost from the heap, contract this pair, and

update the costs of all valid pairs involving v1 .



Note

Directly applying the QEM method on the original meshes results in
high-frequency signals in noisy areas.

VM-Net apply the VC method on the original mesh for the first two mesh levels
and then apply the QEM method for the remaining mesh levels.



Result

Metric: mean loU

Method | mloU(%) | Conv Category

TangentConv [57] 43.8
SurfaceConvPF [68] 44.2
3DMV [Y] 48.3
TextureNet [23] 56.6
JPBNet [6] 63.4 2D-30
MVPNet [25] 64.1
V-MVFusion [29] 74.6
BPNet* [20] 74.9
PointNet++ [45] 33.9
FCPN [46] 44.7
PointCNN [33] 45.8
DPC [13] 59.2 ;
MCCN[19] | 633 | Fomtconv
PointConv [65] 66.6
KPConv [58] 68.4
JSENet [21] 69.9
SparseConvNet [17] 72.5
I;\/IinkowskiNet [7] 73.6 SparseCony
SPH3D-GCN [32] 61.0
HPEIN [26] 61.8 GraphConv
DCM-Net [51] 65.8
VMNet (Ours) | 74.6 | Sparse+Graph Conv

Table 1. Mean intersection over union scores on ScanNet
Test [8]. Detailed results can be found on the ScanNet bench-
marking website”. * indicates a concurrent work.



Result with and without attention modules

Information | mloU(%) Baseline Intra Inter | mloU(%)
Geo Only 58.1 v 70.2
Euc Only 71.0 v v 12:1
VMNet(Geo+Euc) 73.3 v v v 73.3

Table 4. Ablation study: (Left) Euclidean and geodesic informa-
tion; (Right) Network components.



Mesh Simplification and Attention operators

Operator | mloU(%) Method | mloU(%)
Vector Attention 123 VC only 123
EdgeConv 72.6 QEM only 72.9
Scalar Attention 73.3 VC + QEM 73.3

Table 5. Ablation study: (Left) Attentive operators; (Right) Mesh
simplification.
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Difference from DCM-Net

Only difference between VM-Net and DCN-Net, is
the type of conv operators.

DCM-Net - GraphConv

VM-Net - SparseConv + GraphConv

Then concat of 2 features is done DCM-Net they
are not agg as in VM-Net using attention modules.



Self-Damaging Contrastive Learning

https://arxiv.orq/pdf/2106.02990.pdf
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Abstract

- Real world data is imbalance and spare in some classes.
- When large networks are pruned, it forgets difficult-to-memorize samples.
(generally they are long-tail samples)

Maximize agreement

h; +— Representation —» h; ?




Novel idea

create a dynamic self-competitor model to contrast with the target model, which
is a pruned version of the latter.

During training, contrasting the two models will lead to adaptive online mining of
the most easily forgotten samples for the current target model, and implicitly
emphasize them more in the contrastive loss.

Extensive experiments across multiple datasets and imbalance settings show that
SDCLR significantly improves not only overall accuracies but also balancedness,
in terms of linear evaluation on the full-shot and few-shot settings.



What do compressed deep neural networks forget?

https://arxiv.orq/pdf/1911.05248.pdf

Findings:

1. top-1 or top-5 test-set accuracy hide critical details in the ways that pruning impacts
model generalization.

2. The examples most impacted by pruning, Pruning ldentified Exemplars (PIEs), are
more challenging for both models and humans to classify (Human study done here).
Compression impairs the model’s ability to predict accurately on the long-tail of less
frequent instances.

3. Pruned networks are more sensitive to natural adversarial images and corruptions. This
sensitivity is amplified at higher levels of compression.


https://arxiv.org/pdf/1911.05248.pdf

PIE Samples

Pruning Identified Exemplars (PIEs) are images where there is a high level of
disagreement between the predictions of pruned and non-pruned models. PIEs
can be thought as images that are forgotten after pruning.
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Self-Competitor Network

Self competitor network is pruned version of target network. It happens at
training step.

Since the self-competitor is always obtained and updated from the latest target
model, the two branches will co-evolve during training. Their contrasting will
implicitly give more weights on long-tail samples.

This also makes it different from SImCLR.



How to Measure Representation Balancedness

The balancedness of a feature space can be reflected by the linear separability
w.r.t. all classes.
1. learn the visual representation fv on the training dataset with LCL.

2. training a linear classifier layer L on the top of fv with a labeled balanced
dataset (by default, the full dataset where the imbalanced subset is sampled

from).
3. evaluating the accuracy of the linear classifier L on the testing set.

Here such accuracy measure is called linear separability performance.



Few Shot performance measure

In place of step 2.

we use only 1% samples of the full dataset from which the pre-training imbalanced
dataset is sampled.

Such a metric is few shot performance measure.



Experiment

Divide each dataset to three disjoint groups: {Many, Medium, Few}.

In subsets of CIFAR10/CIFAR100, Many and Few each include the largest and smallest 1/3
classes, respectively.

For instance

- CIFAR-100: the classes with [500-106, 105-20, 19-5] samples belong to [Many (34
classes), Medium (33 classes), Few (33 classes)] categories, respectively.

- ImageNet, we follow OLTR (Liu et al., 2019) to define Many as classes each with over
training 100 samples, Medium as classes each with 20-100 training samples and Few
as classes under 20 training samples.



Loss Function

Normalized Temperature-scaled Cross Entropy Loss as in SImCLR.
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Result

Table 1. Comparing the linear separability performance for models learned on balanced subset D}, and long-tail subset D; of CIFAR10
and CIFAR100. Many, Medium and Few are split based on class distribution of the corresponding D;.

Dataset Subset Many Medium Few All

CIFAR10 Dy 82.93 + 2.71 81.53 +5.13 77.49 £+ 5.09 80.88 £ 0.16
D; 78.18 +4.18 76.25 &= 5.33 71.37 == 1.07 75.55 £ 0.66

CIFAR100 Dy, 46.83 £+ 2.31 46.92 + 1.82 46.32 + 1.22 46.69 + 0.63

D; 50.10 £ 1.70 47.78 £ 1.46 43.36 £ 1.64 47.11 £ 0.34




Result

Table 2. Comparing the few-shot performance for models learned on balanced subset D} and long-tail subset D; of CIFAR10 and

CIFAR100. Many, Medium and Few are split according to class distribution of the corresponding D;.

Dataset Subset Many Medium Few All

CIFAR10 Dy 77.14 + 4.64 74.25 + 6.54 7147 + 7.55 74.57 + 0.65
D; 76.07 + 3.88 67.97 + 5.84 54.21 +10.24 67.08 + 2.15

CIFAR100 Dy, 2548 + 1.74 25.16 £ 3.07 24.01 +1.23 24.89 + 0.99
D; 30.72 + 2.01 21.93 +2.61 15.99 £+ 1.51 22.96 £0.43




Result

Table 3. Comparing the linear separability performance and few-shot performance for models learned on balanced subset D, and long-tail
subset D; of ImageNet and ImageNet-100. We consider two long tail distributions for ImageNet: Pareto and Exp, which corresponds to
ImageNet-LT and Imagenet-LT-exp, respectively. Many, Medium and Few are split according to class distribution of the corresponding
D;.

Dataset Long tail type  Split type linear separability few-shot
Many  Medium  Few All Many  Medium  Few All
Tinvaseit Paret Dy, 58.03 56.02 5671 56.89  29.26 2697 2782 2797
aEe areto B 58.56 5571 5666 5693 3136 2621 2721 2833
— Ex Dy, 5746 5770  57.02 5742 3231 3291 32.17 3245
£ P D 58.37 5697 5627 5743 3598 2956 2802 32.12
ImageNet-100 Pareto Dy 68.87 6633  61.85 66.74  48.82 4471  41.08  45.84

Dy 69.54  63.71 59.69 6546 4836  39.00 3523  42.16




Comparison with SImCLR

Table 4. Compare the proposed SDCLR with SImCLR in terms of the linear separability performance. T means the metric the higher the
better and | means the metric is the lower the better.

Dataset Framework Many 1 Medium 1 Few 1 Std | All 1
— SimCLR 7818 +4.18 7623 +533 71374707 5134+3.66 7555+ 0.66
SDCLR 8644 +3.12 8184+478 7623+629 506+391  82.00+ 0.68
ClEARI00LT  SIMCLR 50104170 47.78 £ 146 4336+ 1.64  3.09+085  47.11 +0.34
SDCLR 5854+ 082 5570+ 144 52.10+1.72 286+069  55.48 + 0.62
SimCLR 69.54 63.71 59.69 4.04 65.46
ImageNet-100-LT ¢y 70.10 65.04 60.92 3.75 66.48




Comparison with SImCLR

Table 5. Compare the proposed SDCLR with SImCLR in terms of the few-shot performance. T means the metric the higher the better and

J means the metric is the lower the better.

Dataset Framework Many 1 Medium 1 Few 1 Std | All 1
CIFAR10 SimCLR  76.07 £3.88 67.97 £5.84 5421 4+1024 9.80+5.45 67.08 £ 2.15
SDCLR  76.57+£490 70.01 +7.88  62.79 £ 7.37 6.99 + 5.20 70.47 + 1.38
CIFAR100 SimCLR  30.72 £2.01 2193 +2.61 15.99 + 1.51 6.27 £ 1.20 22.96 + 0.43
SDCLR 20972 +152 2541 +191 2055+ 210 3.98 + 0.98 25.27 + D.83

i SimCLR 48.36 39.00 35.23 552 42.16

& SDCLR 48.31 39.17 36.46 5.07 42.38
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Figure 2. Pre-training on imbalance splits of CIFAR100, The per-

centage of many (e), medium (o) and few (e) in 1% most easily
forgotten data under different training epochs.



Visualization

SimCLR

SDCLR

Figure 5. Visualization of attention on tail class images with Grad-
CAM (Selvaraju et al., 2017). The first and second row corresponds
to SimCLR and SDCLR, respectively.



