
DeepMetaHandles: Learning Deformation Meta-Handles of 
3D Meshes with Biharmonic Coordinates
Problem Statement:

Learning to generate 3D meshes is much more challenging than 2D images due to the 
irregularity of mesh data structures and the difficulty in designing loss functions to 
measure geometrical and topological properties. For such reasons, to create new 
meshes, instead of generating a mesh from scratch, recent work assumes that the 
connectivity structure of geometries is known so that the creation space is restricted to 
changing the geometry without altering the structure.



subset of mesh vertices -> control points, used as the deformation handles.

Restrict the transformations of the handles to pure translations.

Control Points



mesh vertices: V ∈ Rn×3 (n vertices)

control points: C ∈ Rc×3, sampled from V using farthest point sampling over 
geodesic distance

linear map W ∈ Rn×c between them (V = WC) is often called generalized 
barycentric coordinates’



Barycentric Coordinates

Very used for triangle subspace like mesh, point interpolation and adding 
analytical boundary constraints are easier wrt coordinate system.



Barycentric Coordinates
https://www.cs.technion.ac.il/~gotsman/AmendedPubl/Roi/biharmonic.pdf

https://www.cs.technion.ac.il/~gotsman/AmendedPubl/Roi/biharmonic.pdf


Biharmonic Coordinates

All deformations on the right depends linearly on the 
derivatives of the coordinates, characterizes the local 
behavior of the deformation. 

Adding a constraint for coordinates to have large 
derivatives leads to overlapping maps in that local 
regions.

Figure on right is obtained by keeping the boundary fixed 
while manually changing the normal derivative vector 
direction and magnitude. 



Closed Form Solutions

Closed-form expressions with respect to the handles can be easily calculated after 
a pre-computation. Closed form solution gives exact result as opposed to 
numerical methods which give approximations.

Therefore it is stable solution to deformation problem.



deformation function f : Rc×3 → Rn×3 defined over the given control points C, 

f(C) = WC, has 3c degrees of freedom. f(C) are new deformed vertices of mesh.

Why 3c?

C_0 = 2i^ + 3j^ + 4k^ , Each of these axis counts for 1 degree of freedom.

This individual freedom for each control points might lead to many implausible 
deformations, so there is need to further limit the freedom.



Meta Handles

meta-handle Mi ∈ Rc×3 is represented as offsets over the c control points:

Mi = [ti1, · · · ,tic]
T , tij ∈ R3 indicates the offset of the j-th control point for the i-th 

meta-handle.

These meta-handles are trained under a constraint that they don't only affect a 
local region rather they should represent some semantic meaning like deformation 
for chair legs, etc.



MetaHandleNet



MetaHandleNet Inputs

Point cloud uniformly sampled from mesh, P ∈ Rp×3

Control points sampled from vertices of mesh, C ∈ Rc×3

Biharmonic coordinates, W ∈ Rp×c -> interpolated from the mesh vertices to the 
point cloud (i.e., W ∈ Rp×c) according to the barycentric coordinates.



Deformation Function

g : Rm → Rn×3 , wrt m meta handles

C0 ∈ Rc×3 denotes the rest positions of the given control points.



The degrees of freedom of the deformation function g is typically much smaller than that of 
the deformation function f, i.e., m ≪ 3c.

This results in metahandlenet model forming correlation between control points and also 
learn structural properties of object like all legs of chair should be deformed together.





DeformNet inputs

Inputs to the model are 2 shapes of same categories, so the DeformNet learns to 
deform source shape to target shape of same category but of different structure. 
So essentially this design methodology constraints the MetaHandle to learn 
structural significance as well.

Source shape is broken into 3 parts point clouds, biharmonic coordinates, control 
points



Training Objectives

1. Match deformed input shape to target shape

2. Any deformation sampled from the learned ranges is plausible

3. Learned meta-handles properly disentangle the deformation space



Loss Function

Lfit  minimizes the Chamfer distance between the deformed source point cloud 
and the target point cloud. (1st objective)

Lgeo and Ladvare geometry loss and adversarial loss, added for the second 
objective.



Geometric loss

In each iteration, deformation is sampled within predicted ranges and any implausible 
deformation is penalized.

Lgeo = Lsymm + Lnor + LLap

Lsymm-> Minimize chamfer distance between point clouds reflected over x axis. (Because 
apparently all shapes in their dataset are symmetric on x axis)

Lnor-> Minimizes the angle difference between the face normals of the source mesh and the 
deformed mesh. 

LLap minimizes l1-norm of the difference of Cotangent Laplacian. 
https://igl.ethz.ch/projects/Laplacian-mesh-processing/Laplacian-mesh-optimization/lmo.pdf

https://igl.ethz.ch/projects/Laplacian-mesh-processing/Laplacian-mesh-optimization/lmo.pdf


Mesh Smoothing

Input:Noisy mesh (scanned or other)

Output:Smooth mesh

How:Filter out high frequency noise



Smoothing by Filtering



Laplacian for high curvature surface

These either uniformly smooth the 
mesh, shown in Fig. 7(b) and (e), 

or attempt to retain features by 
placing more (positional) weight on 
high curvature vertices, as seen in 
Fig. 7(c) and (f).

To further increase feature 
preservation, practically any function 
which reduces the weight on 
Laplacian smoothness constraints of 
feature vertices can be applied. Fig. 
7(d) and (g).



Laplacian Smoothing





Cotangent Laplacian

Same weight to both neighboring points Pi+1, Pi-1. This isn’t optimal when 
smoothing, weighted smoothing works better.

Planar meshes will be invariant to smoothing



Cotanget Laplacian

LLap maintains the curvature flow, this 
moves each vertex along its normal, while 
leaving the tangential component 
unchanged. It also prevents distortion by 
this



Adversarial Loss

The 2D discriminator network is jointly trained with MetaHandleNet and Deform- 
Net with a classification loss function.



Disentanglement Loss

Constraint to properly disentangle the deformation space.

1. Lsp encourages the meta-handles Mi and the coefficient vector a to be sparse 
by penalizing their l1- norm. 

2. Lcov penalizes the covariance matrix (calculated for each batch) of the 
coefficients a.

3. Lortho encourages meta-handles to cover different parts of the control-point 
offsets by penalizing dot products between the meta-handles.

4. LSVD encourages the control points to translate in a single direction within 
each meta-handle.



Experiments

Eval on 15,522 shapenet models of three categories: chair, table, and car.

Control points, c = 50

Metahandles, m = 15



Results

For a set of generated shapes A and a set of ground truth shapes B, coverage measures the 
fraction of the shapes in B that can be roughly represented within A, while MMD (minimum 
matching distance) measures how well shapes in B can be represented by shapes in A. 

A & B both had 500 shapes


