DeepMetaHandles: Learning Deformation Meta-Handles of
3D Meshes with Biharmonic Coordinates

Problem Statement:

Learning to generate 3D meshes is much more challenging than 2D images due to the
irregularity of mesh data structures and the difficulty in designing loss functions to
measure geometrical and topological properties. For such reasons, to create new
meshes, instead of generating a mesh from scratch, recent work assumes that the
connectivity structure of geometries is known so that the creation space is restricted to
changing the geometry without altering the structure.



Control Points

subset of mesh vertices -> control points, used as the deformation handles.

Restrict the transformations of the handles to pure translations.

Figure 2: Two deformations re-
sulted from moving the red con-
trol point along the arrow direc-
tions.



mesh vertices: V € R™? (n vertices)

control points: C € RS, sampled from V using farthest point sampling over
geodesic distance

linear map W € R"™° between them (V = WC) is often called generalized
barycentric coordinates’



Barycentric Coordinates

Very used for triangle subspace like mesh, point interpolation and adding
analytical boundary constraints are easier wrt coordinate system.

Consider a triangle ' defined by its three vertices, ry, ro and r3. Each point r located inside this triangle
can be written as a unique convex combination of the three vertices. In other words, for each r there is a
unique sequence of three numbers, A1, Ao, A3 > 0 such that A\ + Ay + A3 = 1 and

r = All‘l =+ /\21‘2 e )\31‘3,



Barycentric Coordinates

https://www.cs.technion.ac.il/~gotsman/AmendedPubl/Roi/biharmonic.pdf
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https://www.cs.technion.ac.il/~gotsman/AmendedPubl/Roi/biharmonic.pdf

Biharmonic Coordinates

All deformations on the right depends linearly on the
derivatives of the coordinates, characterizes the local
behavior of the deformation.

Adding a constraint for coordinates to have large
derivatives leads to overlapping maps in that local
regions.

Figure on right is obtained by keeping the boundary fixed
while manually changing the normal derivative vector
direction and magnitude.
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Figure 4: A square (top-left) is mapped to itself in various
ways using biharmonic coordinates, varying only the
normal derivatives. Forcing the derivative to be too large
(bottom-right) leads to self-overlap.



Closed Form Solutions

Closed-form expressions with respect to the handles can be easily calculated after
a pre-computation. Closed form solution gives exact result as opposed to
numerical methods which give approximations.

Therefore it is stable solution to deformation problem.



deformation function f : R*3 — R™? defined over the given control points C,

f(C) = WC, has 3c degrees of freedom. f(C) are new deformed vertices of mesh.

Why 3c?
CO0= 2 + 3jA + 4k" , Each of these axis counts for 1 degree of freedom.

This individual freedom for each control points might lead to many implausible
deformations, so there is need to further limit the freedom.



Meta Handles

meta-handle M. € RS is represented as offsets over the ¢ control points:

M=Tt., - ,tiC]T, tij e R3 indicates the offset of the j-th control point for the i-th

meta-handle.

These meta-handles are trained under a constraint that they don't only affect a
local region rather they should represent some semantic meaning like deformation

for chair legs, etc.



MetaHandleNet
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Figure 3: Architecture of MetaHandleNet: it incorporates the information from the shape (point cloud), control-point handles, and bihar-
monic coordinates by building a 3D tensor, and predicts a set of meta-handles with the corresponding coefficient ranges for the shape.



MetaHandleNet Inputs

Point cloud uniformly sampled from mesh, P € RP*3

Control points sampled from vertices of mesh, C € R®°

Biharmonic coordinates, W € RP*¢-> interpolated from the mesh vertices to the
point cloud (i.e., W € Rpxc) according to the barycentric coordinates.

Explicitly, the formulae for the barycentric coordinates of point r in terms of its Cartesian coordinates (x, y) and in terms of the Cartesian coordinates of the triangle's

vertices are:
- (2 —ys)(@ —@s) + (w3 —x2)(y—y3)  (v2 —ws)(@ —x3) + (w3 — x2)(y — y3)
det(T) (e —ys) (@ —x3) + (w5 — 22) (11 —us)
Ny = (s y)(@ ) (e )y —y) (s —yl)(w z3) + (21 — 23)(y — y3)
det(T) (e —we)(@ — ) + (23 —22) (3 —w)

A3 =1-X — .



Deformation Function

g: R™ — R™3 wrt m meta handles

the meta-handles {IM; };—1...,, and their linear combination
coefficients a = [a1,- -+ , am]:

g(@a;{M;}i=1..m) = W(Co + Z a; M), (2)
=1

C, € R°*3 denotes the rest positions of the given control points.



The degrees of freedom of the deformation function g is typically much smaller than that of
the deformation function f, i.e., m < 3c.

This results in metahandlenet model forming correlation between control points and also
learn structural properties of object like all legs of chair should be deformed together.
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Figure 4: Overview of our method. We learn the meta-handles in

an unsupervised fashion.



DeformNet inputs

Inputs to the model are 2 shapes of same categories, so the DeformNet learns to
deform source shape to target shape of same category but of different structure.
So essentially this design methodology constraints the MetaHandle to learn
structural significance as well.

Source shape is broken into 3 parts point clouds, biharmonic coordinates, control
points



Training Objectives

1. Match deformed input shape to target shape
2. Any deformation sampled from the learned ranges is plausible

3. Learned meta-handles properly disentangle the deformation space



LOSS FunCt|On L= £fit + Egeo + »Cadv + Edisen-

Lfit minimizes the Chamfer distance between the deformed source point cloud
and the target point cloud. (1st objective)

Lgeo and Ladvare geometry loss and adversarial loss, added for the second

objective.

dep(S1,82) = ) mm lz—yl5+ > mm |x—y||2

iL‘ESl 71652



Geometric loss

In each iteration, deformation is sampled within predicted ranges and any implausible
deformation is penalized.
L =L +L

o}

+L
ge symm nor Lap

L. -> Minimize chamfer distance between point clouds reflected over x axis. (Because
apparently all shapes in their dataset are symmetric on x axis)

L ..~ Minimizes the angle difference between the face normals of the source mesh and the

deformed mesh.

L, ., minimizes |1-norm of the difference of Cotangent Laplacian.

httgag://igl.ethz.ch/pro'|ects/LaQIacian-mesh—grocessing/LaQIacian-mesh-oQtimization/Imo.Qdf


https://igl.ethz.ch/projects/Laplacian-mesh-processing/Laplacian-mesh-optimization/lmo.pdf

Mesh Smoothing

Input:Noisy mesh (scanned or other)
Output:Smooth mesh

How:Filter out high frequency noise




Smoothing by Filtering

Filtering
Convolution
- Inverse
Fourier _ Fourier
Transform Geometric space Transform
Frequency space
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Laplacian for high curvature surface

These either uniformly smooth the
mesh, shown in Fig. 7(b) and (e),

or attempt to retain features by
placing more (positional) weight on
high curvature vertices, as seen in
Fig. 7(c) and (f).

To further increase feature L"
preservation, practically any function (@) original (173k)
which reduces the weight on
Laplacian smoothness constraints of

feature vertices can be applied. Fig.
7 ( d) an d (g) (e) constant weights (s = 0.01) (f) cdf weights (s = 0.02) (g) cdf + Laplacian weights (s = 0.02)

Figure 7: Comparison of smoothing weights. Columns 2 and 3 are generated using the weight functions introduced in Section 5, with
different scaling factors s. The right column shows the effect of reducing the weights on the (Laplacian) smoothness constraints of high
curvature vertices. All results in this figure were generated with L =L,



Laplacian Smoothing

p;=(x ,Y)

Pi

PP+ L(P)
Finite difference
discretization of second
derivative  ———3 1(p)=1(p,,,—p,)+>(Pi~P)
= Laplace operator in 2 2
one dimension



Algorithm:
Repeat for m iterations (for non boundary points):

p; < P; +AL(p;)

For which A.?
O<A<l1

Closed curve converges to?
Single point



Cotangent Laplacian

Same weight to both neighboring points P. ., P. .. This isn’t optimal when
smoothing, weighted smoothing works better

R ) P;
1 P;
L(Pi) (PH{ P1)+§(p1—1_pz) p;
< Pl
o) .
Px
h+h 1 [ ]
_ 5Ty L(p,)= |—p.
W, ) 2(cotozij—i—cotﬁl.j) (p)= ; y j; P |~ P;
JELN;

Planar meshes will be invariant to smoothing



Cotanget Laplacian

LLap maintains the curvature flow, this
moves each vertex along its normal, \
leaving the tangential component

unchanged. It also prevents distortior

this
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Figure 9: Comparison of umbrella (b) and cotangent (c) discretiza-
tion of the L matrix. In (d), Laplacian constraints L.V’, = 0 are

relaxed on feature vertices.



Adversarial Loss

The 2D discriminator network is jointly trained with MetaHandleNet and Deform-
Net with a classification loss function.
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Figure 5: We utilize a soft rasterizer [25] and a 2D discriminator
network to penalize unrealistic deformations.



Disentanglement Loss Laisen = Lsp + Leov + Lortho + LsvD.

Constraint to properly disentangle the deformation space.

1.

LSIO encourages the meta-handles Mi and the coefficient vector a to be sparse
by penalizing their [1- norm.

L ., penalizes the covariance matrix (calculated for each batch) of the
coefficients a.

Lortho encourages meta-handles to cover different parts of the control-point
offsets by penalizing dot products between the meta-handles.

L encourages the control points to translate in a single direction within

SVD
each meta-handle.



Experiments

Eval on 15,522 shapenet models of three categories: chair, table, and car.

Control points, ¢ = 50

Table 2: Chamfer distance (x100) and Cotangent Laplacian
(x10) between different ablated versions (on chair category). For
both metrics, lower is better. DoF indicates degrees of freedom.

Metahandles, m = 15

Meta-handle / Handle DoF Lot CDJ CotLap]
Handle 50 X 3 w/0 4.78 5.60
Meta-handle 15 w/o 5.76 8.61
Handle a0ix% 3 w/ 7.98 7.69
Meta-handle 15 w/ 6.28 575




Results

For a set of generated shapes A and a set of ground truth shapes B, coverage measures the
fraction of the shapes in B that can be roughly represented within A, while MMD (minimum
matching distance) measures how well shapes in B can be represented by shapes in A.

A & B both had 500 shapes

Table 1: Coverage (higher is better) and MMD (x 100, lower is
better) comparison between different methods.

Car

COV T [MMD |

Chair
COV 71 | MMD |
3DN [39]| 32.0% 4.56
CCI[10] | 51.0% 4.26
NC [46] | 54.4% 4.23
Ours 64.6% 4.28

46.6%
50.3%
66.6%
76.5%

291
2,79
2.65
2.97

Table
COV 7T | MMD |
30.6% 4.26
50.2% 3.88
44.7% 3.85
54.9% 3.70

Table 3: Coverage (higher is bet-
ter) and MMD (x 100, lower is
better) for different ablated ver-
sions (on Chair category).

COV1T | MMDJ
w/o meta-handle| 48.4% 4.69
w/o L ,dv 56.3% 4.64
w/o Lyisen 64.1% 4.14
Ours 64.6% 4.28




