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Introduction

e State-of-the-art contrastive methods

o reducing the distance between positive pairs
o increasing the distance between negative pairs

e Careful treatment of negative pairs

o Large batch size : SImCLR(20.02) / Googlebrain
o Memory bank: MoCo(19.11), MoCo v2(20.03) / FAIR
o Customized mining strategies
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Contributions

e Achieves higher performance than state-of-the-art contrastive methods without
using negative pairs.

e More robust to the choice of image augmentations than contrastive methods.

e Usestwo neural networks, referred to as online and target networks, that interact
and learn from each other.

e Trainsits online network to predict the target network’s representation of another
augmented view of the same image.




Related work

e Most unsupervised methods for representation learning:

o Generative:

build a distribution over data and latent embedding and use the learned embeddings as image
representations.

Operate directly in pixel space.

-> computationally expensive
> high level of detail required for image generation may not be necessary for representation

learning.



Related work

e Most unsupervised methods for representation learning:

o Discriminative:
> Contrastive approaches avoid a costly generation step in pixel space.

> Deep Cluster uses bootstrapping on previous versions of its representation to produce targets for
the next representation

> Relative patch prediction, Colorizing gray-scale image, image inpainting, ...



Related work - Discriminative
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Method

e Many approaches cast the prediction problem directly in representation space:
augmented views.

e Predicting directly in representation space can lead to collapsed representation:

for instance, a representation that is constant across view is always fully
predictive of it self.

e Discriminative approach typically requires comparing each representation of an
augmented view with many negative examples.
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Method (detail)

input
image

MLP

def network(inputs):
"""Build the encoder, projector and predictor.
embedding = ResNet(name='encoder', configuration='ResNetV1_50x1') (inputs)
proj_out = MLP(name='projector') (embedding)
pred_out = MLP(name='predictor') (proj_out)
return dict(projection=proj_out, prediction=pred_out)

nnn

class MLP(hk.Module):
"""Mylti Layer Perceptron, with normalization."""
def __init(self, name):
super().__init__(name=name)

def __call__(self, inputs):
out = hk.Linear(output_size=HPS['mlp_hidden_size']) (inputs)
out = hk.BatchNorm(**HPS['batchnorm_kwargs']) (out)
out = jax.nn.relu(out)
out = hk.Linear (output_size=HPS['projection_size']) (out)
return out

prediction

> qo(2)

online



Details

Proj.gs Pred.qs Top-1 Top-5
depth depth

1 61.9 86.0

1 2 65.0 86.8
3 65.7 86.8

1 71.5 90.7

2 2 72.5 908
3 71.4 90.4

1 71.4 90.4

3 2 72.1 90.5

3 72.1 90.5

Projector gy Top-1  Top-5
output dim

16 69.9+0.3 89.9

32 71.3 90.6

64 72.2 90.9

128 72.5 91.0

256 72.5 90.8

512 726 91.0

(a) Projector and predictor depth (i.e. the number of Linear

layers).

(b) Projection dimension.



Details

Learning
rate Top-1 Top-5 Weight decay Top-1  Top-5

coefficient
0.01 34.8+3.0 60.8+3.2 -
0.1 65.0 87.0 110 72.1 90.4
0.2 Y 90.6 5-107° 726 91.0
0.3 72.5 90.8 151079 72.5 90.8
0.4 72.3 90.6 5-10°° 71.0x03  90.0
0.5 715 90.1 1:-107° 69.6+0.4  89.3
1 69.4 89.2

(b) Weight decay.

(a) Base learning rate.

Table 15: Effect of learning rate and weight decay. We note that BYOL’s performance is quite robust within a range
of hyperparameters.

Batch Top-1 Top-5

size BYOL (ours) SimCLR (repro) BYOL (ours) SimCLR (repro)
4096 72.5 67.9 90.8 88.5
2048 72.4 67.8 90.7 88.5
1024 72.2 67.4 90.7 88.1
512 72.2 66.5 90.8 87.6
256 71.8 64.3+2.1 90.7 86.3+1.0
128 69.6+0.5 63.6 89.6 85.9
64 59.7T+1.5 59.2+42.9 83.2+1.2 83.0+1.9

Table 16: Influence of the batch size.



Pseudo Code
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Algorithm 1: BYOL: Bootstrap Your Own Latent

Inputs :
D, T, and T set of images and distributions of transformations
0, fo. g9, and gy initial online parameters, encoder, projector, and predictor
&, fe, g¢ initial target parameters, target encoder, and target projector
optimizer optimizer, updates online parameters using the loss gradient
K and N total number of optimization steps and batch size

{m}E, and {m}X_, target network update schedule and learning rate schedule

for k = 1to K do
B+ {z; ~ D}, // sample a batch of N images
for z; € Bdo
t~Tandt' ~T' // sample image transformations
z1 < go(fo(t(x;))) and 23 « go(fo(t'(x:))) // compute projections
21 « ge(fe(t'(z:))) and 25 « ge(fe(t(z:))) // compute target projections
(go(21), (ge(22),25)
o - (il + el ) i S By SR S
end
N
80— & > Ol // compute the total loss gradient w.r.t.f
i=1
0 < optimizer(6, 50, 1) // update online parameters
E— 1€+ (1 —7)0 // update target parameters
end

Output :encoder fy




Experiments - Linear Evaluation

Method Top-1 Top-5 Method Architecture Param. Top-1 Top-5
Local Agg. 60.2 - SimCLR [8] ResNet-50 (2x) 94M 74.2 92.0
PIRL [32] 63.6 - CMC[11] ResNet-50 (2x) 94M 70.6 89.7
CPC v2[29] 63.8 85.3 BYOL (ours) ResNet-50 (2x) 94M 77.4 93.6
CMC[11] 66.2 87.0 CPC v2[29] ResNet-161 305M 1S5 90.1
SimCLR [8] 69.3 89.0 MoCo [9] ResNet-50 (4 x) 375M 68.6 -
MoCo v2 [34] 71.1 - SimCLR [8] ResNet-50 (4 x) 375M 76.5 93.2
InfoMin Aug.[12] 73.0 91.1 BYOL (ours)  ResNet-50 (4 x) 375M 78.6 94.2
BYOL (ours) 74.3 91.6 BYOL (ours) ResNet-200 (2x) 250M 79.6 94 .8
(a) ResNet-50 encoder. (b) Other ResNet encoder architectures.

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.



Experiments - Semi-supervised

Method Top-1 Top-5 Method Architecture Param. Top-1 Top-5
1% 10% 1% 10% 1% 10% 1% 10%
Supervised [64] 25.4 56.4 484 80.4  CPC v2[29] ResNet-161 305M - - 779 91.2
- — SimCLR [8] ResNet-50 (2x) 94M 585 T71.7 83.0 91.2
InstDisc : - 392 774 BYQL (ours) ResNet-50 (2x)  94M  62.2 735 84.1 91.7
PIRL [32] - - 572 838  gimcLR[8] ResNet-50(4x) 375M 63.0 74.4 858 92.6
SimCLR [§] 48.3 65.6 755 87.8  ByQL (ours) ResNet-50(4x) 375M 69.1 75.7 87.9 925

BYOL (ours) 53.2 688 784 89.0 BygL (ours) ResNet-200 (2x) 250M 71.2 77.7 89.5 93.7

(a) ResNet-50 encoder. (b) Other ResNet encoder architectures.

Table 2: Semi-supervised training with a fraction of ImageNet labels.



Experiments - Transfer, Classification

Method Food101 CIFAR10 CIFARIO0O Birdsnap SUN397 Cars  Aircraft VOC2007 DTD  Pets Caltech-101  Flowers
Linear evaluation:

BYOL (ours) 75.3 91.3 78.4 57.2 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1
SimCLR (repro) 72.8 90.5 74.4 42.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6
SimCLR [8] 68.4 90.6 71.6 37.4 58.8 50.3 50.3 80.5 74.5 83.6 90.3 91.2
Supervised-IN [8] 72.3 93.6 78.3 53.7 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7
Fine-tuned:

BYOL (ours) 88.5 97.8 86.1 76.3 63.7 91.6 88.1 85.4 76.2 91.7 93.8 97.0
SimCLR (repro) 87.5 97.4 85.3 75.0 63.9 91.4 87.6 84.5 75.4 894 91.7 96.6
SimCLR [8] 88.2 97.7 85.9 75.9 63.5 91.3 88.1 84.1 73.2 89.2 92.1 97.0
Supervised-IN [8] 88.3 97.5 86.4 75.8 64.3 92.1 86.0 85.0 74.6 92.1 93.3 97.6
Random init [§] 86.9 95.9 80.2 76.1 53.6 91.4 85.9 67.3 64.8 81.5 72.6 92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.



Experiments - Transfer, Others

Method APsp  mloU Higher better Lower better
SUPCI'ViSCd-IN [()] 74.4 74.4 Method pct.< 1.25 pct.< 1252 pct.< 125; rms rel
SimCLR (repro) 7.2 75.2 SimCLR (repro) 83.3 96.5 99.1 0.557 0.134
BYOL (ours) 775 76.3 BYOL (ours) 84.6 96.7 99.1 0.541 0.129
(a) Transfer results in semantic (b) Transfer results on NYU v2 depth estimation.

segmentation and object detection.

Table 4: Results on transferring BYOL’s representation to other vision tasks.



Experiments - Batch, Transformation
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Experiments - Hyperparameters

Method Predictor Target network 3  Top-1

2arget Bewe; 0D BYOL 7 ¥ 0 725
Constant random network 1 18.8x0.7 v v 1 70.9
Moving average of online  0.999 69.8 v 1 70.7
Moving average of online 0.99 72.5 SimCLR 1 69.4
Moving average of online 0.9 68.4 v 1 69.1

Stop gradient of online’ 0 0.3 v 0 0.3

v 0 0.2

(a) Results for different target modes. "In the stop gradient of 0 0.1

online, T = Tpase = 0 is kept constant throughout training.

(b) Intermediate variants between BYOL and SimCLR.

Table 5: Ablations with top-1 accuracy (in %) at 300 epochs under linear evaluation on ImageNet.



Appendix. InfoNCE
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e NCE: Noise-contrastive estimation: A new estimation principle for unnormalized statistical models (jmlr 2010)
e Learning word embeddings efficiently with noise-contrastive estimation (NIPS 2013)
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Experiments - Normalization
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Figure 6: Effect of normalization on the /5 norm of network outputs.
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SimSiam:
Exploring Simple Siamese Representation Learning

https://arxiv.orq/pdf/2011.10566.pdf
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General idea behind this paper is to prove that all contrastive learning method are result of
siamese network in one way or other and all other techniques used in MoCo, BYOL, SimCLR
or SWAV are just design choices.

SimSam just uses stop gradient in order to train a good enough contrastive model with far
less batch size.



Focus of paper

This paper focuses on employing simple Siamese networks to learn meaningful
representation even in the absence of

1) negative sample pairs (SimCLR)
2) large batches
3) momentum encoders

They show collapsing solutions do exist for the loss and structure, but a stop-gradient
operation plays an essential role in preventing collapsing.



Dissimilarities with other CL methods

SimSam can be thought of as
1) BYOL without the momentum encoder
2) SimCLR without negative pairs

3) SwAV without online clustering
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Finding
stop-gradient operation is critical.

This finding can be obscured with the usage of a momentum encoder, which is always
accompanied with stop-gradient (as it is not updated by its parameters’ gradients).

While the moving-average behavior may improve accuracy with an appropriate
momentum coefficient, our experiments show that it is not directly related to
preventing collapsing.



Architecture
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| 1
£:§D(p1, stopgrad(ZQ))+§D(P2, stopgrad(z))

The encoder on x, receives no gradient from Z,

from P, in the second term (and vice versa for xl).

in the first term, but it receives gradients

X, is firstly fed to trainable encoder and then x,, is fed to it in one training step.

2

They also show doing the training way boosts the accuracy. They also trying using
asymmetric loss by sampling two pairs for each image in the asymmetric version (“2x”).
It makes the gap smaller.

| sym. asym. asym. 2 X
acc. (%) |  68.1 64.8 67.3




Training with and without stop gradient

Without stop-gradient, the optimizer quickly finds a degenerated solution and reaches
the minimum possible loss of-1.

1
-0.5 —-
— w/ stop-grad Vi
2 —— w/o stop-grad o 5
';20 P b g | acc. (%)
g 2 z
k= £ z w/ stop-grad | 67.7+0.1
g e — w/ stop-grad & — w/ stop-grad w/o stop-grad 0.1
— w/o stop-grad — w/o stop-grad
1= 0 0

(=]

epochs 100 0 epochs 100 0 epochs 100

Figure 2. SimSiam with vs. without stop-gradient. Left plot: training loss. Without stop-gradient it degenerates immediately. Middle
plot: the per-channel std of the ¢>-normalized output, plotted as the averaged std over all channels. Right plot: validation accuracy of a
kNN classifier [34] as a monitor of progress. Table: ImageNet linear evaluation (“w/ stop-grad” is mean=std over 5 trials).



Clustering way of looking at SimSam

F is a network parameterized by 0. T is the augmentation. x is an image. The expectation
E[-]is over the distribution of images and augmentations.

£(9,T]> — ExT[||~F9(T<‘7)) - 77:1“”2] -

nX is the representation of the image x, n is not necessarily the output of a
network; it is the argument of an optimization problem



min £(6, 7).
0,n

The variable 0 is analogous to the clustering centers: it is the learnable parameters of an
encoder. The variable nx is analogous to the assignment vector of the sample x (a
one-hot vector in k- means): it is the representation of x.

they alternate between these sub-problems:
' «+ arg mein L,

n' < argmin £(0%,n)
7

Solving for 6. use SGD to solve the sub-problem, N4 which is a constant in this
subproblem.



Solving for n. The sub-problem can be solved independently for each nx.
Er || For (T(2)) = e 3]

it Er [ Fo (T(2)].
Alteration:

gi+l  arg rneinle,T[er(T(-’E)) — For (7'/(1'))“3]

1-step 10-step 100-step 1-epoch
acc. (%) 68.1 68.7 68.9 67.0




Results

method bs‘?tz"eh “elfgtr‘sve O 100ep 200ep 400ep 800 ep
SIMCLR (repro.+) 4096 v 665 683 698 704
MoCo v2 (repro.+) 256 v v 67.4 69.9 71.0 722
BYOL (repro.) 4096 ¥ 665 706 732 743
SWAV (repro.+) 4096 665 691 707 718
SimSiam 256 681 700 708 713

Table 4. Comparisons on ImageNet linear classification. All are based on ResNet-50 pre-trained with two 224 %224 views. Evaluation
is on a single crop. All competitors are from our reproduction, and “+” denotes improved reproduction vs. original papers (see supplement).

VOC 07 detection VOC 07+12 detection COCO detection COCO instance seg.
pre-train APs) AP  AP;s | APsy AP APs;s | APsy AP APy | APk Apmask Apnask
scratch 359 168  13.0 | 602 338 33.1 | 440 264 278 | 469 293  30.8

ImageNet supervised | 74.4 424 427 81.3 535 588 582 382 412 547 333 352
SimCLR (repro.+) 759 468  50.1 81.8 555 614 | 577 379 409 546 333 353
MoCo V2 (repro.+) 771 485 525 | 823 570 633 | 588 392 425 | 555 343  36.6

BYOL (repro.) 771 470 499 81.4 553 61.1 57.8 379 409 54.3 332 35.0
SwWAV (repro.+) 755 465 49.6 81.5 554 614 576 376 403 542 331 35.1
SimSiam, base 75.5 470 502 82.0 564 628 575 379 409 542 332 352

SimSiam, optimal 773 485 525 | 824 570 637 | 593 392 421 | 560 344  36.7

Table 5. Transfer Learning. All unsupervised methods are based on 200-epoch pre-training in ImageNet. VOC 07 detection: Faster
R-CNN [30] fine-tuned in VOC 2007 trainval, evaluated in VOC 2007 test; VOC 07+12 detection: Faster R-CNN fine-tuned in VOC 2007
trainval + 2012 train, evaluated in VOC 2007 test; COCO detection and COCO instance segmentation: Mask R-CNN [18] (1 x schedule)
fine-tuned in COCO 2017 train, evaluated in COCO 2017 val. All Faster/Mask R-CNN models are with the C4-backbone [13]. All VOC
results are the average over 5 trials. Bold entries are within 0.5 below the best.



